GEBYAR DISKON 95%+10%! KEJUTAN SPESIAL KEMERDEKAAN
Belajar Data Science 6 Bulan Bareng Ahli Bersertifikat hanya Rp. 170K 
BURUAN AMBIL
Pendaftaran ditutup dalam 0 Hari 11 Jam 26 Menit 49 Detik 

4 Metode Machine Learning Dasar pada Data Science

Belajar Data Science di Rumah 23-Juni-2022
https://www.dqlab.id/files/dqlab/cache/d447c3bc533e5ab0ac6de45af5f6cd83_x_Thumbnail800.jpg

Dalam data science untuk dapat menemukan pola dibalik suatu dataset agar bisa lebih bermanfaat lagi, diperlukan sebuah metode machine learning. Machine learning sendiri membahas tentang bagaimana cara mesin dapat belajar sendiri sehingga mesin tersebut dapat melakukan tugas tertentu tanpa terprogram secara eksplisit. 


Tidak seperti AI yang dapat meniru kemampuan manusia dalam merespon suatu sistem, machine learning justru mampu membuat metodenya sendiri untuk proses belajar. Konsep kerja machine learning dalam menggunakan metode yang telah terprogram adalah dengan menerima dan menganalisis data inputan untuk kemudian dapat memprediksi nilai keluaran atau output. 


Berdasarkan metode-metode tersebut terdiri dari tiga tipe metode diantaranya Supervised Learning, Unsupervised Learning, dan Reinforcement Learning. Pada kesempatan kali ini, kami akan membahas tentang empat rekomendasi metode machine learning yang digunakan untuk pengklasifikasian. Jadi, jangan beranjak dan baca artikel DQLab sampai selesai, ya!


1. Random Forest

machine learning

Random forest merupakan salah satu algoritma yang digunakan untuk pengklasifikasian dataset dalam jumlah besar. Klasifikasi random forest dilakukan melalui penggabungan tree dengan melakukan training dataset yang kamu miliki. Selain itu, algoritma random forest menggunakan algoritma decision tree untuk melakukan proses seleksi. Dimana tree atau pohon yang dibangun dibagi secara rekursif dari data pada kelas yang sama.


Proses klasifikasi pada random forest berawal dari memecah data sampel yang ada dalam decision tree secara acak. Setelah pohon terbentuk,maka akan dilakukan voting pada setiap kelas dari data sampel. Kemudian, mengkombinasikan vote dari setiap kelas kemudian diambil vote yang paling banyak.Dengan menggunakan random forest pada klasifikasi data maka, akan menghasilkan vote yang paling baik. Pada saat proses klasifikasi selesai dilakukan, inisialisasi dilakukan dengan sebanyak data berdasarkan nilai akurasinya.


Keuntungan penggunaan random forest yaitu mampu mengklasifikasi data yang memiliki atribut yang tidak lengkap,dapat digunakan untuk klasifikasi dan regresi akan tetapi tidak terlalu bagus untuk regresi, lebih cocok untuk pengklasifikasian data serta dapat digunakan untuk menangani data sampel yang banyak.


Baca juga: Tujuan dan Penerapan Algoritma Data Science Naive Bayes


2. KNN

machine learning

Algoritma KNN atau sering disebut K-Nearest Neighbor merupakan algoritma yang melakukan klasifikasi berdasarkan kedekatan jarak suatu data dengan data yang lain. Dekat atau jauh suatu jarak dihitung berdasarkan jarak Euclidean. KNN merupakan salah satu algoritma non parametrik yang digunakan dalam pengklasifikasian.


Selain naive bayes, algoritma KNN juga menjadi algoritma pengklasifikasian yang terkenal dengan tingkat keakuratan yang baik. Keuntungan dari algoritma KNN adalah sangat nonlinear, lebih mudah dipahami dan diimplementasikan karena kita cukup mendefinisikan fungsi untuk menghitung jarak antar-instance, menghitung jarak x dengan semua instance lainnya berdasarkan fungsi tersebut dan menentukan kelas x sebagai kelas yang paling banyak muncul di k-instance.


3. Support Vector Machine

machine learning

SVM (Support Vector Machine) adalah algoritma klasifikasi yang memiliki kinerja yang bagus, tingkat keakuratan yang dinilai cukup tinggi untuk pengklasifikasian data, dan error rate yang dihasilkan minimum. Adapun keuntungan dari algoritma SVM adalah dapat menentukan hyperplane atau pemisah dengan memilih bidang yang memiliki optimal margin maka generalisasi pada SVM dapat terjaga dengan sendirinya, tingkat generalisasi pada SVM tidak dipengaruhi oleh jumlah data latih , dengan menentukan parameter soft margin, noise dapat dikontrol pada kesalahan klasifikasi sehingga proses pelatihan menjadi jauh lebih ketat.


Baca juga: Memahami Keunggulan dan Manfaat Data Science dalam Dunia Bisnis


4. Naive Bayes

machine learning

Naive bayes merupakan metode pengklasifikasian paling populer digunakan dengan tingkat keakuratan yang baik. Banyak penelitian tentang pengklasifikasian yang telah dilakukan dengan menggunakan algoritma ini. Berbeda dengan metode pengklasifikasian dengan logistic regression ordinal maupun nominal, pada algoritma naive bayes pengklasifikasian tidak membutuhkan adanya pemodelan maupun uji statistik.


Naive bayes merupakan metode pengklasifikasian berdasarkan probabilitas sederhana dan dirancang agar dapat dipergunakan dengan asumsi antar variabel penjelas saling bebas (independen). Pada algoritma ini pembelajaran lebih ditekankan pada pengestimasian probabilitas. Keuntungan algoritma naive bayes adalah tingkat nilai error yang didapat lebih rendah ketika dataset berjumlah besar, selain itu akurasi naive bayes dan kecepatannya lebih tinggi pada saat diaplikasikan ke dalam dataset yang jumlahnya lebih besar.


machine learningmachine learning


Sahabat DQ ingin berkarir di bidang data science tapi, tidak memiliki background pendidikan yang linier dengan itu? Sudah mencoba belajar otodidak tapi malahan overdosis materi? Mengingat skill data science terbilang cukup banyak yang wajib dikuasai salah satunya adalah memahami algoritma data science nya hingga tahap penerapannya pada dataset. 


Yuk, coba free module Introduction to Data Science with R dan python dari DQLab sekarang 

Caranya gimana? Mudah banget kok cukup signup sekarang ke DQLab.id lalu pilih menu learn.


Setelah itu kamu sudah bisa menikmati pembelajaran yang praktis dan aplikatif dan jago algoritma data science bersama DQLab! Tunggu apa lagi? Yuk, signup sekarang dan mulai belajar Module Premium di DQLab!


Penulis: Rian Tineges

Editor: Annissa Widya Davita


Mulai Belajar
Data Science Sekarang
Bersama DQLab

Buat Akun Belajarmu & Mulai Langkah
Kecilmu Mengenal Data Science.

Buat Akun Gratis Dengan :

https://dqlab.id/files/dqlab/file/data-web-1/data-user-2/50040333a3a5d46bf130664e5870ebc6/8be7fae4b69abead22aa9296bcab7b4b.jpg Sign-Up dengan Google

https://dqlab.id/files/dqlab/file/data-web-1/data-user-2/50040333a3a5d46bf130664e5870ebc6/d0aa879292fb427c0978d2a12b416e98.jpg Sign-Up dengan Facebook

Atau Buat Dengan :